Tulane University
The professors at Tulane took a unique approach to their precast studio to tackle a problem that may look unique to the New Orleans today, but will most likely be an issue that will arise for populations around the US in coming years. In 2010, 123.3 million people, or 39 percent of the nation’s population lived in counties directly on the shoreline. This population is expected to increase by 8% from 2010 to 2020. So, when professors Kentaro
Tsubaki Associate Dean for Academics, Favrot Associate Professor of Architecture and Charles Jones, adjunct lecturer, were looking for an issue to tackle using precast concrete that would not only use the material to its best advantage but also be socially impactful, water management in public spaces was key.
“The first semester was really about scoping and identifying specific opportunities that then we can really dig in. It happened in two scales. The first one, in a kind of a smaller, micro scale, we tackled the design of a sidewalk paving and rain garden. That primarily was led by Charles’ digital fabrication seminar, and then kind of merged into the studio. All the students have to take the seminar and the studio. On the macro scale, we looked at the design of a linear park,” says Tsubaki. The program includes 10 students, primarily undergraduate, fourth and fifth year students, and one graduate student. Two of the students are continuing their work from the studio as an independent study during the summer of 2019. The program also has a graduate assistant.
The intent of the program was to develop and deliver infrastructure projects that focus on the relationship between precast systems, architecture infrastructure, and our most valuable resource, water. The professors used the greater New Orleans urban water management plan as the framework in part because a lot of research had already been done. So now the students and professors will develop the projects in more detail.
The team settled on the Lafitte Greenaway, a linear park now that reconnects, or hopes to reconnect, the French Quarter to the bayou. It was a shipping canal that there was displaced and turned into a railway, and then it was abandoned and became a linear park. They felt it had lots of opportunities from pedestrian bridges, permeable paving systems, to retention walls. The students worked on solutions that would aid in flooding events that would happen multiple times each year (5-10). It only has to rain about 10 minutes before the park will flood. The end goal: Using the park as retention, but also as usable public space.
The teamwork in this project was slightly different than in some other programs sponsored by the PCI Foundation. Of course, local precasters were involved, but because Tulane does not have an engineering program, they looked at industry professional from civil and structural engineering, landscape architects, planners, and others familiar with this work.
The work on this project will continue over several years, allowing new solutions and research to develop through the precast concrete curriculum provided by the professors at Tulane and their local industry partners.